Structural features of GPI-specific phospholipase D revealed by proteolytic fragmentation and Ca2+ binding studies.

نویسندگان

  • J Y Li
  • K Hollfelder
  • K S Huang
  • M G Low
چکیده

Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in plasma and is potentially capable of degrading the anchor utilized by many cell surface proteins. The goal of this work was to study structural features of the GPI-PLD that might be involved in regulation of its activity. Trypsin cleaved the 100-110 kDa GPI-PLD polypeptide into three major fragments (two of approximately 40 kDa and a carboxyl-terminal fragment of 30 kDa) which were relatively resistant to further proteolysis. Pretreatment of the GPI-PLD with chelators resulted in complete degradation. During the cleavage process the GPI-PLD enzymatic activity increased approximately 3-4-fold but no other major change in its properties (e.g. inhibition by chelators and lipids, thermal stability, oligomerization, etc.) was observed. Intact or trypsinized GPI-PLD bound 45Ca2+ (approximately 5.5 ions/molecule GPI-PLD; Kd approximately 16.1 microM as determined by equilibrium dialysis) which could not be blocked by the addition of other divalent metal ions. However, inhibition of enzymatic activity by divalent cation chelators appeared to involve removal of bound Zn2+ rather than Ca2+. A metal analysis of GPI-PLD revealed approximately 5 and 10 atom/molecule of calcium and zinc, respectively. The data suggest that the predicted integrin E-F hand-like sites in GPI-PLD are functional but not directly involved in enzymatic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

Proteolytic cleavage of beta(2)-glycoprotein I: reduction of antigenicity and the structural relationship.

Binding of beta(2)-glycoprotein I (beta(2)-GPI)-dependent anticardiolipin antibodies (aCL) derived from antiphospholipid syndrome (APS) is significantly reduced in aCL ELISA due to loss of the phospholipid (PL) binding property of beta(2)-GPI by plasmin treatment. In the present study, the treatment generated a nicked form of beta(2)-GPI and resulted in loss of antigenicity for the autoantibodi...

متن کامل

Structural composition and functional characterization of soluble CD59: heterogeneity of the oligosaccharide and glycophosphoinositol (GPI) anchor revealed by laser-desorption mass spectrometric analysis.

CD59 (protectin) is a glycophosphoinositol (GPI)-anchored inhibitor of the membrane attack complex of complement found on blood cells, endothelia and epithelial cells. In addition to the lipid-tailed CD59, soluble lipid-free forms of CD59 are present in human body fluids. We have investigated the detailed structural composition of the naturally occurring soluble urinary CD59 (CD59u) using pepti...

متن کامل

An endogenous glycosylphosphatidylinositol-specific phospholipase D releases basic fibroblast growth factor-heparan sulfate proteoglycan complexes from human bone marrow cultures.

Basic fibroblast growth factor (bFGF) is a hematopoietic cytokine that stimulates stromal and stem cell growth. It binds to a glycosylphosphatidylinositol (GPI)-anchored heparan sulfate proteoglycan on human bone marrow (BM) stromal cells. The bFGF-proteoglycan complex is biologically active and is released by addition of exogenous phosphatidylinositol-specific phospholipase C. In this study, w...

متن کامل

Phospholipase A2 engineering. Structural and functional roles of the highly conserved active site residue aspartate-49.

Site-directed mutagenesis and high-resolution two-dimensional (2D) proton nuclear magnetic resonance (NMR) were used to probe the structural and functional roles of a highly conserved residue, Asp-49, in the interfacial catalysis by bovine pancreatic phospholipase A2 (PLA2, overexpressed in Escherichia coli). According to crystal structures, the side chain carboxylate of Asp-49, along with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 46  شماره 

صفحات  -

تاریخ انتشار 1994